Deeptime: a Python library for machine learning dynamical models from time series data

نویسندگان

چکیده

Abstract Generation and analysis of time-series data is relevant to many quantitative fields ranging from economics fluid mechanics. In the physical sciences, structures such as metastable coherent sets, slow relaxation processes, collective variables, dominant transition pathways or manifolds channels probability flow can be great importance for understanding characterizing kinetic, thermodynamic mechanistic properties system. Deeptime a general purpose Python library offering various tools estimate dynamical models based on including conventional linear learning methods, Markov state (MSMs), Hidden Models Koopman models, well kernel deep approaches VAMPnets MSMs. The largely compatible with scikit-learn, having range Estimator classes these different but in contrast scikit-learn also provides Model classes, e.g. case an MSM, which provide multitude methods compute interesting thermodynamic, kinetic quantities, free energies, times paths. designed ease use easily maintainable extensible code. this paper we introduce main features structure deeptime software. found under https://deeptime-ml.github.io/ .

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Machine learning algorithms for time series in financial markets

This research is related to the usefulness of different machine learning methods in forecasting time series on financial markets. The main issue in this field is that economic managers and scientific society are still longing for more accurate forecasting algorithms. Fulfilling this request leads to an increase in forecasting quality and, therefore, more profitability and efficiency. In this pa...

متن کامل

Machine Learning Models for Housing Prices Forecasting using Registration Data

This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...

متن کامل

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

Random dynamical models from time series.

In this work we formulate a consistent Bayesian approach to modeling stochastic (random) dynamical systems by time series and implement it by means of artificial neural networks. The feasibility of this approach for both creating models adequately reproducing the observed stationary regime of system evolution, and predicting changes in qualitative behavior of a weakly nonautonomous stochastic s...

متن کامل

Seglearn: A Python Package for Learning Sequences and Time Series

seglearn is an open-source python package for machine learning time series or sequences using a sliding window segmentation approach. The implementation provides a flexible pipeline for tackling classification, regression, and forecasting problems with multivariate sequence and contextual data. This package is compatible with scikit-learn and is listed under scikit-learn ”Related Projects”. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Machine learning: science and technology

سال: 2021

ISSN: ['2632-2153']

DOI: https://doi.org/10.1088/2632-2153/ac3de0